Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wanjala , Paul Muyoma"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Characterization of Chemically Activated Carbons Produced from Coconut and Palm Kernel Shells Using SEM and FTIR Analyses
    (Science Publishing Group, 2021-06-30) Wanjala , Paul Muyoma
    Chemically activated carbons generated from coconut (CS) and palm kernel (PKS) shells soaked with 1M solution of K2CO3 and NaHCO3 at 1000°C using the Carbolite Muffle Furnace were examined using scanning electron microscopy (SEM) and Fourier Transformation Infrared Spectroscopy (FTIR). Results from the FTIR analyses revealed that the coconut and palm kernel shells manufactured were successfully chemically activated. Several chemical compounds and functional groups, such as hydroxyl groups, carbonyl groups, ethers, alkanes, alkenes, and aromatic groups, were detected in chemically activated carbon produced from palm kernels and coconut shells as proof of the lignocellulose structure in them. Chemically activated carbon made from coconut shells exhibited nine distinct spectra, while palm kernel shells exhibited six distinct spectra. The pores were larger in the chemically activated carbons produced at a higher temperature (1000°C), demonstrating that temperature is an essential process parameter in the development of surface porosity in chemically activated carbons. The chemical carbonization activation methods used provided porosity, a large surface area, and precise morphology for absorption in both the coconut and palm kernel shells, indicating that they can be turned to high-performance adsorbents. Both organic and inorganic contaminants can be removed from the environment using the chemically activated carbons produced.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify